VAMK

Vaihda kieltä: English

Etusivu > Ajankohtaiset koulutukset > Energiatekniikan koulutus (ET) > 2022 > Vuosi 3 > Kompleksianalyysi (IX00BE87)

Kompleksianalyysi

Rakennetyyppi: Opintojakso
Koodi: IX00BE87
OPS: ET 2022
Taso: Insinööri (AMK)
Opiskeluvuosi: 3 (2024-2025)
Lukukausi: Kevät
Laajuus: 5 op
Vastuuopettaja: Mäkelä, Jarmo
Opetuskieli: Suomi

Toteutukset lukuvuonna 2024-2025

Tot.Ryhmä(t)OpiskeluaikaOpettaja(t)KieliIlmoittautuminen
3006ET2022-3, ET2022-3A, ET2022-3B, IT2022-3, IT2022-3A, IT2022-3B, KT2022-3, KT2022-3A, KT2022-3B, KT2022-3C, SAT2022-3, SAT2022-3A, SAT2022-3B, SAT2022-3C, SAT2022-3D, SAT2022V-3, SAT2022V-3A, SAT2022V-3B, TT2022-3, TT2022-3A, TT2022-3B, TT2022-3C, TT2022-3D, TT2022V-3, TT2022V-3A, YT2022-37.1.2025 – 30.4.2025Jarmo MäkeläSuomi1.12.2024 – 13.1.2025

Suoritus ennakkoon? Katso toteutukset lukuvuonna 2023-2024.

Osaamistavoitteet

Kompleksianalyysin kurssissa opitaan derivoimaan ja integroimaan funktioita, joiden muuttujana on kompleksiluku. Kompleksianalyysin avulla voidaan esimerkiksi laskea sellaisia integraaleja, joiden laskeminen ei onnistuisi muulla tavoin. Kompleksianalyysin tärkeänä sovellutuksena ovat integraalimuunnokset, joita käytetään ratkaistaessa tekniikassa usein esiintyviä lineaarisia differentiaaliyhtälöitä. Osoittautuu, että jos differentiaaliyhtälöstä ratkaistava funktio korvataan integraalimuunnoksellaan, saadaan alkuperäistä yhtälöä huomattavasti yksinkertaisempi yhtälö.

Sisältö

1) Kompleksiluvut ja niiden funktiot,
2) Analyyttiset funktiot: Cauchy-Riemann-yhtälöt,
3) Tieintegraalit kompleksitasossa: Cauchyn integraalilause,
4) Kompleksifunktion potenssisarja,
5) Funktion navat ja residyt,
6) Caychyn residylause,
7) Integrointi residylauseella,
8) Fourierin sarjat,
9) Fourierin muunnos,
10) Differentiaaliyhtälön ratkaisu Fourierin muunnoksella,
11) Laplace-muunnos,
12) Differentiaaliyhtälöiden ja –yhtälöryhmien ratkaisu Laplace-muunnoksella,
13) Z-muunnos,
14) Differenssiyhtälöt ja niiden ratkaisu Z-muunoksella,
15) Greenin funktio-menetelmä.

Opiskelumateriaali

Kirjallisuutta: E. Kreyszig: Advanced Engineering Mathematics (Wiley).


Takaisin