Analyyttinen geometria ja lineaarialgebra
Rakennetyyppi: | Opintojakso |
---|---|
Koodi: | ITTP0304 |
Tyyppi: | Pakollinen / Perusopinnot |
OPS: | TT 2016V |
Taso: | Insinööri (AMK) |
Opiskeluvuosi: | 1 (2016-2017) |
Laajuus: | 2 op |
Vastuuopettaja: | Mäkelä, Jarmo |
Opetuskieli: | Suomi |
Osaamistavoitteet
Opiskelija perehtyy matriisi- ja vektorilaskentaan, trigonometriaan, kompleksilukuihin ja epäyhtälöihin. Hän osaa matriisien laskusäännöt ja kykenee laskemaan neliömatriisin determinantin. Hän oppii laskemaan matriisin käänteismatriisin, sekä soveltamaan matriiseja ja determinantteja lineaaristen yhtälöryhmien ratkaisuun. Trigonometriassa hän tutustuu radiaanin käsitteeseen. Hän ymmärtää trigonometristen funktioiden yhteyden yksikköympyrän annettua kulmaa vastaavan kehäpisteen koordinaatteihin, ja kyseisestä yhteydestä seuraavat trigonometristen funktioiden perusominaisuudet. Vektorilaskennassa opiskelija perehdytetään vektoreiden yhteen- ja vähennyslaskuun, luvulla kertomiseen ja vektorin komponenttiesitykseen. Lisäksi hän tutustuu vektoreiden piste- ja ristitulon käsitteisiin, sekä osaa soveltaa niitä geometristen ongelmien ratkaisuun. Opiskelija tutustuu kompleksilukuihin, ja osaa kirjoittaa annetun kompleksiluvun osoitinesityksessä. Osoitinesityksen avulla hän osaa suorittaa kompleksilukujen kerto- ja jakolaskuja, sekä potenssiin korotuksia. Opiskelija oppii ratkomaan lineaarisia, toisen kertaluvun ja murtoepäyhtälöitä.
Opiskelijan työmäärä
Kokonaistyömäärä on 54 h, sisältäen nuorisoasteella 28 h ja aikuisasteella 20 h työjärjestyksessä olevaa opiskelua, lopun ollessa itsenäistä työskentelyä.
Oman oppimisen arviointi 1 h sisältyy lähiopetukseen.
Edeltävät opinnot / Suositellut valinnaiset opinnot
Johdatus tekniikan matematiikkaan.
Sisältö
Matriisit ja determinantit, sekä niiden soveltaminen lineaaristen yhtälöryhmien ratkaisuun. Trigonometriset funktiot määriteltyinä yksikköympyrän kehäpisteiden avulla. Radiaanin käsite. Trigonometristen funktioiden perusominaisuudet, trigonometriset käyrät ja trigonometriset yhtälöt.Vektorit, niiden komponenttiesitys, sekä piste- ja ristitulot. Vektorilaskennan soveltaminen yksinkertaiseten geometristen ongelmien ratkaisuun. Kompleksiluvut, niiden perusominaisuudet, sekä osoitinesitys. Kompleksilukujen kerto- ja jakolasku, sekä potenssiin korotus osoitinesityksessä. Lineaariset ja toisen asteen epäyhtälöt, sekä murtoepäyhtälöt.
Opiskelumateriaali
Majaniemi: "Algebra I ja II" sekä "Geometria", Tietokotka Oy; opettajan valmistama materiaali.
Opetusmuoto / Opetusmenetelmät
Ks. opintojakson "Johdatus tekniikan matematiikkaan" kuvaus.
Arviointikriteerit
Arvosana 5: Opiskelija osaa luovasti soveltaa opintojakson asioita.
Arvosana 3: Opiskelija osaa hyvin hyödyntää opintojakson asioita.
Arvosana 1: Opiskelija osaa myöhempien opintojen ja työelämän kannalta välttämättömät opintojakson asiat.
Arviointimenetelmät
Tentti, kotitehtävät ja ohjatut laskuharjoitukset. Laskuharjoitustilaisuuksissa edellytetään aktiivista läsnäoloa fysiikan laboraatioiden tapaan. Kotitehtävistä pitää olla vähintään 25% suoritettuna.