VAMK

Vaihda kieltä: English

Etusivu > Opintohaku > Analyysin jatkokurssi (IXS9109) > 2022-2023

Analyysin jatkokurssi

Rakennetyyppi: Opintojakso
Koodi: IXS9109
OPS: TT 2020
Taso: Insinööri (AMK)
Opiskeluvuosi: 3 (2022-2023)
Lukukausi: Syksy
Laajuus: 4 op
Vastuuopettaja: Mäkelä, Jarmo
Opetuskieli: Suomi

Osaamistavoitteet

Analyysin jatkokurssilla opiskelija syventää Differentiaalilaskennan ja Analyysin kursseilla opittuja tietoja ja taitoja. Hän oppii derivoimaan useamman muuttujan funktioita, sekä ratkomaan useamman muuttujan funktioiden optimointiongelmia. Näillä taidoilla on runsaasti käytännön sovellutuksia. Kurssin laajimman osion muodostaa kompleksianalyysi. Kompleksianalyysin osiossa opiskelija oppii derivoimaan ja integroimaan kompleksimuuttujan funktioita. Kompleksianalyysi perustuu pitkälti potenssisarjoihin, ja siksi opiskelija perehdytetään ennen kompleksianalyysin alkua reaalimuuttujan funktioiden potenssisarjoihin, sekä niiden suppenemiseen ja hajaantumiseen. Kompleksianalyysin osion tarkoituksena on antaa opiskelijalle tarvittavat esitiedot Integraalimuunosten kurssiin. Potenssisarjoja voidaan käyttää myös differentiaaliyhtälöiden ratkaisuun. Kurssi päättyy lyhyeen katsaukseen variaatiolaskentaan, jota voidaan pitää askeleena eteenpäin tavallisesta differentiaali- ja integraalilaskennasta.

Opiskelijan työmäärä

Kokonaistyömäärä on 108 h, josta työjärjestyksessä olevaa opiskelua VAMKissa 56 h ja yliopistolla 32 h.
Oman oppimisen arviointi 1 h sisältyy lähiopetukseen.

Edeltävät opinnot / Suositellut valinnaiset opinnot

Integraalilaskenta, Differentiaaliyhtälöt ja sarjat.

Sisältö

1. Yhden muuttujan funktion differentiaali- ja integralilaskennan kertaus.
2. Usemman muuttujan funktioiden differentiaalilaskentaa.
3. Useamman muuttujan funktioiden optimointi.
4. Sidotun opitimointiongelman ratkaisu Lagrangen määräämättömien kertoimien menetelmällä.
5. Reaalimuuttujan funktion potenssisarjat.
6. Potenssisarjan suppeneminen ja hajaantuminen, suppenemissäde.
7. Kompleksimuuttujan funktiot.
8. Analyyttiset funktiot, Cauchy-Riemann-yhtälöt.
9. Kompleksimuuttujan funktion tieintegraali.
10. Cauchyn integraalilause.
11. Analyyttisen funktion potenssisarjaesitys, suppenemissäde.
12. Kompleksimuuttujan funktion napa.
13. Laurentin sarja.
14. Residy.
15. Residylause.
16. Reaalimuuttujan funktion integrointi residylauseella.
17. Linearisen differentiaaliyhtälön ratkaisu sarjamenetelmällä.
18. Variaatiolaskennan alkeita; Euler-Lagrangen yhtälö.
19. Sidotut variaatio-ongelmat.

Opiskelumateriaali

Kreyszig, E: "Advanced Engineering Mathematics", John Wiley & Sons. Opettajan valmistama materiaali.

Opetusmuoto / Opetusmenetelmät

Oppitunneilla käsiteltävä teoria, esimerkit ja laskuharjoittelu, itsenäisesti ratkaistavat kotitehtävät.

Arviointikriteerit

Arvosana 5: Opiskelija pystyy luovaan ongelmanratkaisuun lähes kaikissa opintojakson sisältöön liittyvissä tehtävissä.
Arvosana 3: Opiskelija kykenee ratkaisemaan opintojakson keskeisiin sisältöihin liittyviä soveltavia tehtäviä.
Arvosana 1: Opiskelija osaa ratkaista opintojakson keskeisiin sisältöihin liittyviä perustehtäviä.

Arviointimenetelmät

Kotitehtävät, harjoitustyöt, tentti.


Takaisin