VAMK

Vaihda kieltä: English

Etusivu > Arkistoidut koulutukset > Ympäristöteknologia (I-YT) > 2009 > Vuosi 3 > Integraalimuunnokset (IXS9110)

Integraalimuunnokset

Rakennetyyppi: Opintojakso
Koodi: IXS9110
Tyyppi: Pakollinen valinnainen (vaihtoehtoinen) / Ammattiopinnot
OPS: I-YT 2009
Taso: Insinööri (AMK)
Opiskeluvuosi: 3 (2011-2012)
Laajuus: 3 op
Vastuuopettaja: Mäkelä, Jarmo
Opetuskieli: Suomi

Suoritus rästissä? Katso toteutukset lukuvuonna 2018-2019.

Osaamistavoitteet

Monien matemaattisten ongelemien ratkaisu helpottuu huomattavasti, kun funktioden itsensä sijasta tarkastellaankin niiden integraalimuunnoksia. Kun funktio korvataan integraalimuunnoksellaan, jonka tuottamiseen tarvitaan integrointia, funktio korvautuu uuden muuttujan uudella funktiolla. Tärkeimmät integraalimuunnokset ovat Fourier-muunnos, jota käytetään etenkin värähdysilmiöiden analysointiin, sekä Laplace-muunnos, jota käytetään differentiaaliyhtälöiden ratkaisussa. Differentiaaliyhtälöille läheistä sukua ovat differenssiyhtälöt, joiden ratkaisuna saadaan lukujono. Differenssiyhtälöitä voidaan ratkaista niin sanottujen z-muunnosten avulla. Tällä kurssilla, joka perustuu vahvasti Analyysin jatkokurssilla opittuun kompleksianalyysiin, opiskelija opii perustiedot kaikista näistä muunnoksista, sekä niiden soveltamisesta.

Opiskelijan työmäärä

81 h, josta lukujärjestykseen merkittyä lähiopetusta VAMKissa 42 h ja yliopistolla 24 h.
Oman oppimisen arviointi 1 h sisältyy lähiopetukseen.

Edeltävät opinnot / Suositellut valinnaiset opinnot

Integraalilaskenta, Differentiaaliyhtälöt ja sarjat, Analyysin jatkokurssi.

Sisältö

1. Lyhyt kompleksianalyysin ja residylauseen kertaus Analyysin jatkokurssilta.
2. Fourier-sarjat, Dirichlet’n lause.
3. Kompleksinen Fourier-sarja.
4. Seisovan aaltoliikkeen tarkastelu Fourier-sarjojen avulla.
5. Joidenkin sarjojen laskeminen Fourier-sarjojen avulla.
6. Differentiaaliyhtälön ratkaisu Fourier-sarjoilla.
7. Fourier-muunnos ja käänteismuunnos.
8. Esimerkkejä Fourier-muunnosten ja käänteismuunnosten laskemisesta residylauseen avulla.
9. Diffentiaaliyhtälön ratkaisu Fourier-muunnosten avulla.
10. Laplace-muunnos.
11. Käänteinen Laplace-muunnos.
12. Bromwichin integraali.
13. Käänteisten Laplace-muunnosten laskeminen residylauseen avulla.
14. Differentialiyhtälöiden ratkaisu Laplace-muunnoksilla.
15. Differentiaaliyhtälöryhmän ratkaisu Laplace-muunnoksilla.
16. Konvoluutiolause.
17. Origon siirto Laplace-muunnoksissa ja käänteismuunnoksissa.
18. Kausaalinen jono.
19. Kausaalisen jonon z-muunnos.
20. Käänteinen z-muunnos.
21. Käänteisen z-muunnoksen laskeminen residylauseen avulla.
22. Differenssiyhtälö.
23. Differenssiyhtälön ratkaisu z-muunnoksen avulla.
24. Mellin-muunnoksen alkeita.

Opiskelumateriaali

Kreyszig,E: Advanced Engineering Mathematics. John Wiley & Sons. Opettajan valmistama materiaali.

Opetusmuoto / Opetusmenetelmät

Oppitunneilla käsiteltävä teoria, esimerkit ja laskuharjoitukset, itsenäisesti ratkaistavat kotitehtävät.

Arviointikriteerit

Arvosana 5: Opiskelija pystyy luovaan ongelmanratkaisuun lähes kaikissa opintojakson sisältöön liittyvissä tehtävissä.
Arvosana 3: Opiskelija kykenee ratkaisemaan opintojakson keskeisiin sisältöihin liittyviä soveltavia tehtäviä.
Arvosana 1: Opiskelija osaa ratkaista opintojakson keskeisiin sisältöihin liittyviä perustehtäviä.

Arviointimenetelmät

Kotitehtävät, harjoitustyöt, tentti.


Takaisin