VAMK

Change language: Suomi

Front Page > Study Search > Statistical Mathematics (TLVP1502)

Statistical Mathematics

Structure Type: Study unit
Code: TLVP1502
Type: Compulsory / Basic Studies
Curriculum: EY 2015V / 2017V / 2018V
I-RT 2013V
KT 2014V / 2016V / 2018V / 2019V
LT 2014V / 2015V / 2016V / 2017V / 2018V / 2019V / 2020V
RT 2015V
ST 2014V / 2016V / 2018V / 2020V
T-LT 2013V
TT 2014V / 2016V / 2018V / 2020V
Level: Bachelor of Engineering / Bachelor of Business Administration
Year of Study: 3 / 4 (2015-2016 / 2016-2017 / 2017-2018 / 2018-2019 / 2019-2020 / 2020-2021 / 2021-2022 / 2022-2023)
Credits: 2 cr
Responsible Teacher: Niemelä, Riitta / Laaja, Martti / Niittykoski, Jukka / Mäkinen, Seppo
Language of Instruction: Finnish

Courses

Impl.Group(s)Study TimeTeacher(s)LanguageEnrolment
1H-VV2015-09-10 – 2016-05-31Mikko RantaFinnish2015-09-09 – 2016-05-30
2 2016-01-04 – 2016-05-31Mikko RantaFinnish2015-12-07 – 2016-01-10
3I-RT-3V2016-01-04 – 2016-05-21Mikko RantaFinnish2015-12-07 – 2016-01-10
4 2017-01-09 – 2017-04-29Kerstin SiegfridsFinnish2016-12-12 – 2017-01-16
5I-ST-3V, I-TT-3V2017-03-06 – 2017-05-30Mikko RantaFinnish2016-12-12 – 2017-01-16
6 2017-09-01 – 2017-12-22Kerstin SiegfridsFinnish2017-08-21 – 2017-09-18
7I-EY-3V, I-RT-3V2017-08-25 – 2017-12-22Mikko RantaFinnish2017-08-21 – 2017-09-18
8I-KT-2V, I-TT-2V2018-01-08 – 2018-05-26Jussi OjanenFinnish2017-12-11 – 2018-01-15
10T-LT-4VT2018-08-31 – 2018-12-21Kerstin SiegfridsFinnish2018-08-20 – 2018-09-17
11I-ST-3V2019-01-07 – 2019-05-18Jussi OjanenFinnish2018-12-10 – 2019-01-14
12T-LT-3VK2019-09-02 – 2019-12-22Kerstin SiegfridsFinnish2019-08-19 – 2019-09-09
13I-EY-3V2019-10-21 – 2019-12-20Jarmo MäkeläFinnish2019-08-19 – 2019-09-09
14I-ST-2V2019-10-21 – 2020-02-21Jussi OjanenFinnish2019-08-19 – 2019-09-09
3001EY2018V-3, EY2018V-3A, KT2018V-3, KT2018V-3A, KT2018V-3B2021-01-04 – 2021-05-02Onni PyhälahtiFinnish2020-08-17 – 2021-01-10
3002LT2018V-3T2021-01-04 – 2021-02-28Kerstin SiegfridsFinnish2020-08-17 – 2021-01-10
3003TT2018V-3A2021-01-04 – 2021-02-28Jussi OjanenFinnish2020-08-17 – 2021-01-10
3005KT2019V-3A, KT2019V-3B2021-08-02 – 2021-10-25Kerstin Siegfrids, Lotta SaarikoskiFinnish2021-08-01 – 2021-09-06
3006LT2019V-3K2022-01-03 – 2022-02-27Kerstin SiegfridsFinnish2021-12-01 – 2022-01-10
3007ST2020V-2, ST2020V-2A, ST2020V-2B2021-10-17 – 2022-02-25Jussi OjanenFinnish2021-08-01 – 2021-09-06
3010TT2020V-3, TT2020V-3A, TT2020V-3B2023-03-06 – 2023-05-13Kerstin SiegfridsFinnish2022-12-01 – 2023-01-09
3011LT2020V-3T2023-01-02 – 2023-03-05Kerstin SiegfridsFinnish2022-12-01 – 2023-01-10

The descriptions shown below are for the academic year: 2022-2023

Learning Outcomes

The student is able to find statistical data and interpret statistical figures. The student is able to analyze statistical data with different statistics. The student knows the basics of correlation and regression analysis, and is able to run variance analysis and T-test analysis. The student can critically analyze the results acquired from the research. The student is able to use Excel software for statistical analysis.

Student's Workload

54 hours, of which
6 hours of scheduled studies
14 hours of virtual studies, and
34 hours of autonomous studies

The assessment of student’s own learning 1 h is included in contact lessons.

Contents

Basic terms, statistical charts, parameter estimation, linear regression, dependence analysis, correlation, variance, T-test. Using Excel in statistical research.

Recommended or Required Reading and Other Learning Resources/Tools

Lecture notes

Mode of Delivery / Planned Learning Activities and Teaching Methods

Contact studies, virtual lectures and exercises, project work.

Assessment Criteria

1 the student is able to recognise and use the basic concepts of statistical analysis, and can calculate the most common characteristic values of a given material.
3 the student can carry out a statistical analysis on the internal dependences and influences of a given sample of data, e.g., correlations, regression and the T-test.
5 the student can interpret statistical analyses, draw logical conclusions, and apply the obtained knowledge and skills with challenging statistical samples.

Assessment Methods

Examination, project work and exercises. Numeric scale (0-5).


Back