VAMK

Change language: Suomi

Front Page > Archived Education > Information Technology (I-IT) > 2013 > Year 2 > Analysis (IITA0103)

Analysis

Structure Type: Study unit
Code: IITA0103
Type: Compulsory / Professional Studies
Curriculum: I-IT 2013
Level: Bachelor of Engineering
Year of Study: 2 (2014-2015)
Credits: 3 cr
Responsible Teacher: Mäkelä, Jarmo
Language of Instruction: English

Courses During the Academic Year 2014-2015

Impl.Group(s)Study TimeTeacher(s)LanguageEnrolment
4I-IT-2N2015-01-05 – 2015-05-02Jarmo MäkeläEnglish2014-12-08 – 2015-01-12

Learning Outcomes

This course is a direct continuation of the differential calculus course. A student will learn the basics of integral calculus, differential equations, and series. Integral calculus may be used, for instance, to calculate areas of planar regions and volumes of three-dimensional bodies. Differential equations, in turn, have a very large range of applications. They may be used, for instance, when we try find the best possible form for a bridge, investigate the changes of electric current and voltage during the course of time in an electric circuit, or estimate the number of bacteria in a bottle of milk left on a table. As a matter of fact, most equations used in applied mathematics are actually differential equations. Series and power expansions, in turn, are needed when the behaviour of a given function becomes hopelessly complicated, and we want to find a practical approximation for the behaviour of the function within a certain small domain. During this course the student will learn to integrate, solve differential equations, and write the power expansion of the given function. Students are also made familiar with the Fourier series, which are important, for instance, in an analysis of the vibrations of a machine, as well as in telecommunication.

Student's Workload

The total amount of student's work is 81 h, containing 42 h of scheduled contact studies.

Contents

Definite and indefinite integrals, formulas of integration, area and volume, numerical integration. Basic concepts of differential equations. Separation of variables and a linear differential equation. Differential equations of the second order with constant coefficients. Sequences, numerical solution of differential equations. Arithmetical and geometrical series. Power series and their applications. Fundamentals of Fourier series. Applications specific to degree programme.

Recommended or Required Reading and Other Learning Resources/Tools

The material prepared by the lecturer.

Mode of Delivery / Planned Learning Activities and Teaching Methods

The basics of learning constitutes of lectures where the theory is explained and examples are given. A mere attending the lectures and listening to the lecturer is not sufficient for proper learning. In practice, an independent pondering of the contents of the course becomes best realized when a student solves independently, at home, the problems given by the lecturer. Solutions to the problems are given during the lectures. Students are given exercises which are to be solved with a computer.

Assessment Criteria

Grade 1: The student knows those subjects of the course, which are necessary for the forthcoming studies and working life.
Grade 3: The student is well-abled utilize the course contents.
Grade 5: The student is able to apply creatively the course contents.

Assessment Methods

Exercises and examination. The student is required to perform at least one quarter of the homework exercises. All the given computer-related exercises must be handed in by the end of the course.


Back